Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59.744
Filtrar
1.
Physiol Plant ; 176(2): e14266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558467

RESUMO

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Assuntos
Arachis , Plântula , Arachis/genética , Plântula/genética , Cloreto de Sódio , Multiômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565858

RESUMO

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Assuntos
Compostagem , Gases de Efeito Estufa , Solo , Agricultura/métodos , Triticum , Carbono , Carvão Vegetal , Cloreto de Sódio , Cloreto de Sódio na Dieta , Óxido Nitroso/análise , Dióxido de Carbono/análise
3.
Physiol Plant ; 176(2): e14282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591354

RESUMO

In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.


Assuntos
Secas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Cloreto de Sódio/farmacologia , Plantas , Água , Estresse Salino , Estresse Fisiológico
4.
Environ Monit Assess ; 196(5): 437, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592553

RESUMO

Impervious surface cover increases peak flows and degrades stream health, contributing to a variety of hydrologic, water quality, and ecological symptoms, collectively known as the urban stream syndrome. Strategies to combat the urban stream syndrome often employ engineering approaches to enhance stream-floodplain reconnection, dissipate erosive forces from urban runoff, and enhance contaminant retention, but it is not always clear how effective such practices are or how to monitor for their effectiveness. In this study, we explore applications of longitudinal stream synoptic (LSS) monitoring (an approach where multiple samples are collected along stream flowpaths across both space and time) to narrow this knowledge gap. Specifically, we investigate (1) whether LSS monitoring can be used to detect changes in water chemistry along longitudinal flowpaths in response to stream-floodplain reconnection and (2) what is the scale over which restoration efforts improve stream quality. We present results for four different classes of water quality constituents (carbon, nutrients, salt ions, and metals) across five watersheds with varying degrees of stream-floodplain reconnection. Our work suggests that LSS monitoring can be used to evaluate stream restoration strategies when implemented at meter to kilometer scales. As streams flow through restoration features, concentrations of nutrients, salts, and metals significantly decline (p < 0.05) or remain unchanged. This same pattern is not evident in unrestored streams, where salt ion concentrations (e.g., Na+, Ca2+, K+) significantly increase with increasing impervious cover. When used in concert with statistical approaches like principal component analysis, we find that LSS monitoring reveals changes in entire chemical mixtures (e.g., salts, metals, and nutrients), not just individual water quality constituents. These chemical mixtures are locally responsive to restoration projects, but can be obscured at the watershed scale and overwhelmed during storm events.


Assuntos
Rios , Sais , Qualidade da Água , Monitoramento Ambiental , Carbono , Cloreto de Sódio
5.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573740

RESUMO

Salt (NaCl), is an essential nutrient for survival, while excessive salt can be detrimental. In the fruit fly, Drosophila melanogaster, internal taste organs in the pharynx are critical gatekeepers impacting the decision to accept or reject a food. Currently, our understanding of the mechanism through which pharyngeal gustatory receptor neurons (GRNs) sense high salt are rudimentary. Here, we found that a member of the ionotropic receptor family, Ir60b, is expressed exclusively in a pair of GRNs activated by high salt. Using a two-way choice assay (DrosoX) to measure ingestion volume, we demonstrate that IR60b and two co-receptors IR25a and IR76b are required to prevent high salt consumption. Mutants lacking external taste organs but retaining the internal taste organs in the pharynx exhibit much higher salt avoidance than flies with all taste organs but missing the three IRs. Our findings highlight the vital role for IRs in a pharyngeal GRN to control ingestion of high salt.


Assuntos
Proteínas de Drosophila , Cloreto de Sódio , Animais , Drosophila melanogaster , Faringe , Cloreto de Sódio na Dieta , Drosophila , Proteínas de Drosophila/genética , Neurônios
6.
BMJ Open ; 14(4): e081913, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580369

RESUMO

OBJECTIVES: This study aimed to examine the distribution of daily salt intake across the hypertension care cascade and assess the proportional distribution of these care cascade categories across various salt consumption level. DESIGN: A population-based national cross-sectional study. SETTINGS: Data from the Bangladesh STEPS 2018 survey were used, encompassing both urban and rural strata within all eight divisions. National estimates were generated from weighted data. PARTICIPANTS: A diverse population of 6754 men and women aged 18-69 years was included in the study. OUTCOME MEASURES: Daily salt consumption was estimated using the spot urine sodium concentration following Tanaka equation. Distribution of salt intake among different categories of hypertension care cascade, including hypertensives, aware of hypertension status, on treatment and under control, was assessed. RESULTS: Individuals with hypertension consume more salt on average (9.18 g/day, 95% CI 9.02 to 9.33) than those without hypertension (8.95 g/day, 95% CI 8.84 to 9.05) (p<0.02). No significant differences were found in salt intake when comparing aware versus unaware, treated versus untreated and controlled versus uncontrolled hypertension. In the overall population, 2.7% (95% CI 2.1% to 3.6%) of individuals without hypertension adhered to the recommended salt intake (<5 g/day) while 1.6% (95% CI 1.0% to 2.4%) with hypertension did so (p<0.03). Among individuals with hypertension, 2.4% (95% CI 1.4% to 4.0%) of those aware followed the guideline while only 0.8% (95% CI 0.4% to 1.9%) of those unaware adhered (p<0.03). Additionally, no significant differences were observed in adherence between the treated versus untreated and controlled versus uncontrolled hypertension. CONCLUSIONS: Individuals with hypertension consume significantly more salt than those without, with no significant variations in salt intake based on aware, treated and controlled hypertension. Adhering to WHO salt intake guidelines aids better blood pressure management. By addressing salt consumption across hypertension care cascade, substantial progress can be made in better blood pressure control.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Adulto , Masculino , Humanos , Feminino , Estudos Transversais , Hipertensão/epidemiologia , Pressão Sanguínea , Cloreto de Sódio
7.
Sci Rep ; 14(1): 8259, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589560

RESUMO

Microalgae are widely exploited for numerous biotechnology applications, including biofuels. In this context, Chlamydomonas debaryana and Chlorococcum sp. were isolated from Fez freshwater (Morocco), and their growth and lipid and carbohydrate production were assessed at different concentrations of NaCl, NaNO3, and K2HPO4. The results indicate a small positive variation in growth parameters linked to nutrient enrichment, with no considerable variation in carbohydrate and lipid levels in both algae. Moreover, a negative variation was recorded at increased salinity and nutrient limitation, accompanied by lipid and carbohydrate accumulation. Chlorococcum sp. showed better adaptation to salt stress below 200 mM NaCl. Furthermore, its growth and biomass productivity were strongly reduced by nitrogen depletion, and its lipid production reached 47.64% DW at 3.52 mM NaNO3. As for Chlamydomonas debaryana, a substantial reduction in growth was induced by nutrient depletion, a maximal carbohydrate level was produced at less than 8.82 mM NaNO3 (40.59% DW). The effect of phosphorus was less significant. However, a concentration of 0.115 mM K2HPO4 increased lipid and carbohydrate content without compromising biomass productivity. The results suggest that growing the two Chlorophyceae under these conditions seems interesting for biofuel production, but the loss of biomass requires a more efficient strategy to maximize lipid and carbohydrate accumulation without loss of productivity.


Assuntos
Clorofíceas , Microalgas , Fósforo , Lipídeos/química , Salinidade , Nitrogênio , Marrocos , Cloreto de Sódio , Carboidratos , Água Doce , Biomassa , Biocombustíveis
8.
J Phys Chem Lett ; 15(14): 3820-3827, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38557079

RESUMO

Repeat RNA sequences self-associate to form condensates. Simulations of a coarse-grained single-interaction site model for (CAG)n (n = 30 and 31) show that the salt-dependent free energy gap, ΔGS, between the ground (perfect hairpin) and the excited state (slipped hairpin (SH) with one CAG overhang) of the monomer for (n even) is the primary factor that determines the rates and yield of self-assembly. For odd n, the free energy (GS) of the ground state, which is an SH, is used to predict the self-association kinetics. As the monovalent salt concentration, CS, increases, ΔGS and GS increase, which decreases the rates of dimer formation. In contrast, ΔGS for shuffled sequences, with the same length and sequence composition as (CAG)31, is larger, which suppresses their propensities to aggregate. Although demonstrated explicitly for (CAG) polymers, the finding of inverse correlation between the free energy gap and RNA aggregation is general.


Assuntos
RNA , Repetições de Trinucleotídeos , Conformação de Ácido Nucleico , Cloreto de Sódio
9.
Front Immunol ; 15: 1350197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576605

RESUMO

Introduction: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. Methods: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). Results: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. Conclusion: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Animais , Cloreto de Sódio , Edema , Imunidade
10.
Anal Chem ; 96(15): 5922-5930, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38575388

RESUMO

Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.


Assuntos
Compostos de Bifenilo , Quadruplex G , MicroRNAs , Nanopartículas , Neoplasias , Quinaldinas , Humanos , Cloreto de Sódio , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Mitocôndrias , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Physiol Behav ; 279: 114544, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574794

RESUMO

The sodium glucose cotransporter 1 (SGLT1) has been proposed as a non-T1R glucosensor contributing to glucose taste. Studies have shown that the addition of NaCl at very weak concentrations to a glucose stimulus can enhance signaling in the gustatory nerves of mice and significantly lower glucose detection thresholds in humans. Here, we trained mice with (wild-type; WT) and without (knockout; KO) a functioning T1R3 subunit on a two-response operant detection task to differentially respond to the presence or absence of a taste stimulus immediately after sampling. After extensive training (∼40 sessions), KO mice were unable to reliably discriminate 2 M glucose+0.01 M NaCl from 0.01 M NaCl alone, but all WT mice could. We then tested WT mice on a descending array of glucose concentrations (2.0-0.03 M) with the addition of 0.01 M NaCl vs. 0.01 M NaCl alone. The concentration series was then repeated with glucose alone vs. water. We found no psychophysical evidence of a non-T1R taste transduction pathway involved in the detection of glucose. The addition of NaCl to glucose did not lower taste detection thresholds in WT mice, nor did it render the stimulus detectable to KO mice, even at 2 M. The proposed pathway must contribute to functions other than sensory-discriminative detection, at least when tested under these conditions. Detection thresholds were also derived for fructose and found to be 1/3 log10 lower than for glucose, but highly correlated (r = 0.88) between the two sugars, suggesting that sensitivity to these stimuli in this task was based on a similar neural process.


Assuntos
Glucose , Paladar , Humanos , Camundongos , Animais , Glucose/metabolismo , Camundongos Knockout , Paladar/fisiologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sódio , Camundongos Endogâmicos C57BL
12.
Curr Microbiol ; 81(5): 132, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592497

RESUMO

Abiotic stresses threaten the strategic crops of Poaceae (Gramineae) worldwide. Habitat-adapted microbiome of wild plants has the potential to alleviate abiotic stresses in alternate hosts. Persian Gulf's coastal deserts are colonized by halophyte plants hosting habitat-adapted halophytic microbiota. Here, endophytic bacteria from wild Poaceae in coastal deserts of the north Persian Gulf at Hormozgan province, Iran, were isolated and screened for mitigating salinity stress in wheat. Accordingly, seven dominant species of wild Poaceae in the region, i.e., Aeloropus lagopoides, Aeloropus litiralis, Chrysopogon aucheri, Cymbopogon olivieri, Desmostachya sp., Halopayrum mucronatum, and Sporbuls arabicus, were explored. In total, 367 endophytic bacteria were isolated, 90 of which tolerated 2.5-M NaCl. Of these, 38 strains were selected based on their bioactivity and applied for in vitro wheat-interaction assays under 250-mM NaCl stress. Five superior strains promoted seed germination and growth indices in rain-fed winter wheat cv. Sardari, i.e., Bacillus subtilis B14, B19, & B27, Bacillus sp. B21, and Bacillus licheniformis Ba38. In planta assays in saline soil (2.7 dS m-1) using the superior strains indicated that Bacillus sp. B21 and Bacillus licheniformis Ba38 increased germination and root and shoot lengths and their dry and fresh weights in wheat seedlings. Moreover, phenolics and flavonoids contents of wheat seedlings were influenced by endophyte application. Thus, the coastal desert-adapted microbiome of wild Poaceae could alleviate abiotic stress and promote growth in cultivated species of Poaceae, such as wheat.


Assuntos
Bacillus licheniformis , Bacillus , Microbiota , Triticum , Poaceae , Plantas Tolerantes a Sal , Endófitos , Cloreto de Sódio , Estresse Salino , Bacillus subtilis
13.
Artigo em Inglês | MEDLINE | ID: mdl-38568198

RESUMO

Two Gram-negative, non-spore-forming, non-motile, non-flagellated bacteria, designated strains D6T and DH64T, were isolated from surface water of the Pacific Ocean. For strain D6T, growth occurred at 10-40 °C, pH 5.5-9.0 and in the presence of 0-8.0 % NaCl (w/v). For strain DH64T, growth occurred at 10-40 °C, pH 5.5-8.5 and in the presence of 0.5-8.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains D6T and DH64T both belonged to the genera Flagellimonas, with the highest sequence identities to Flagellimonas taeanensis JCM 17757T (98.2 %) and Flagellimonas marinaquae JCM 11811T (98.6 %), respectively. The 16S rRNA gene sequence identity between strains D6T and DH64T was 95.9 %. The average amino acid identity and digital DNA-DNA hybridization values between the two strains and the nearest phylogenetic neighbours were 66.7-93.3 % and 16.1-38.5 %, respectively. The major respiratory quinone of both strains was menaquinone-6. The major polar lipid was phosphatidylethanolamine. The major fatty acids were identified similarly as iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH. The genomic G+C contents of strains D6T and DH64T were determined to be 45.5 and 42.6 mol%, respectively. The combined genotypic and phenotypic data show that the strains represent two novel species within genera Flagellimonas, for which the names Flagellimonas baculiformis sp. nov. and Flagellimonas crocea sp. nov. are proposed, with type strains D6T (=MCCC M28982T=KCTC 92604T) and DH64T (=MCCC M28986T=KCTC 92975T).


Assuntos
Ácidos Graxos , Cloreto de Sódio , Oceano Pacífico , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Água do Mar
14.
Sci Rep ; 14(1): 7970, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575652

RESUMO

Dietary salt has been associated with cognitive impairment in mice, possibly related to damaged synapses and tau hyperphosphorylation. However, the mechanism underlying how dietary salt causes cognitive dysfunction remains unclear. In our study, either a high-salt (8%) or normal diet (0.5%) was used to feed C57BL/6 mice for three months, and N2a cells were cultured in normal medium, NaCl medium (80 mM), or NaCl (80 mM) + Liraglutide (200 nM) medium for 48 h. Cognitive function in mice was assessed using the Morris water maze and shuttle box test, while anxiety was evaluated by the open field test (OPT). Western blotting (WB), immunofluorescence, and immunohistochemistry were utilized to assess the level of Glucagon-like Peptide-1 receptor (GLP-1R) and mTOR/p70S6K pathway. Electron microscope and western blotting were used to evaluate synapse function and tau phosphorylation. Our findings revealed that a high salt diet (HSD) reduced the level of synaptophysin (SYP) and postsynaptic density 95 (PSD95), resulting in significant synaptic damage. Additionally, hyperphosphorylation of tau at different sites was detected. The C57BL/6 mice showed significant impairment in learning and memory function compared to the control group, but HSD did not cause anxiety in the mice. In addition, the level of GLP-1R and autophagy flux decreased in the HSD group, while the level of mTOR/p70S6K was upregulated. Furthermore, liraglutide reversed the autophagy inhibition of N2a treated with NaCl. In summary, our study demonstrates that dietary salt inhibits the GLP-1R/mTOR/p70S6K pathway to inhibit autophagy and induces synaptic dysfunction and tau hyperphosphorylation, eventually impairing cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Liraglutida , Camundongos , Animais , Liraglutida/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cloreto de Sódio/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Cognição
15.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575856

RESUMO

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Assuntos
Antioxidantes , Ácido Ascórbico , Antioxidantes/metabolismo , Ervilhas , Espécies Reativas de Oxigênio , Clorofila A , Peroxidação de Lipídeos , Cloreto de Sódio/farmacologia , Estresse Salino
16.
Mikrochim Acta ; 191(5): 244, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578321

RESUMO

The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Cloreto de Sódio , Prata , Colorimetria/métodos , Ânions , Cátions Monovalentes
17.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611939

RESUMO

Biosynthesized silver nanoparticles (AgNPs) are widely used in varied applications, which are morphology dependent. Consequently, a morphology-controlled synthesis is mandatory. Although there are several studies focused on the plant extract-based biosynthesis of metallic nanoparticles, the use of extracts obtained from agro-wastes is scant. Furthermore, information regarding morphology modification through the use of additional agents is even more scarce. Thus, in this study, AgNPs were synthesized using a malt extract (ME) obtained from an artisanal beer brewing process residue. Additionally, sodium chloride (NaCl), gum arabic (GA), and talc (T) were used in an attempt to modify the morphology of AgNPs. XRD, DLS, SEM, and TEM results demonstrate that stable AgNPs of different sizes and shapes were synthesized. FTIR, HPLC analysis, and the quantification of total proteins, free amino acids, reducing sugars, and total polyphenols before and after AgNPs synthesis showed that ME biomolecules allowed them to act as a source of reducing and stabilizing agents. Therefore, this study provides evidence that ME can be successfully used to biosynthesize AgNPs. Additionally, the antibacterial activity of AgNPs against Gram-negative and Gram-positive bacteria was evaluated. Results indicate that AgNPs show a higher antibacterial activity against Gram-positive bacteria.


Assuntos
Acacia , Nanopartículas Metálicas , Cerveja , Prata , Antibacterianos/farmacologia , Cloreto de Sódio
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612475

RESUMO

MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have found that StMAPKK5 is responsive to drought and salt stress. To further investigate the function and regulatory mechanism of StMAPKK5 in potato stress response, potato variety 'Atlantic' was subjected to drought and NaCl treatments, and the expression of the StMAPKK5 gene was detected by qRT-PCR. StMAPKK5 overexpression and RNA interference-mediated StMAPKK5 knockdown potato plants were constructed. The relative water content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as proline (Pro) and malondialdehyde (MDA) contents of plant leaves, were also assayed under drought and NaCl stress. The StMAPKK5 interacting proteins were identified and validated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The results showed that the expression of StMAPKK5 was significantly up-regulated under drought and NaCl stress conditions. The StMAPKK5 protein was localized in the nucleus, cytoplasm, and cell membrane. The expression of StMAPKK5 affected the relative water content, the enzymatic activities of SOD, CAT, and POD, and the proline and MDA contents of potatoes under drought and salt stress conditions. These results suggest that StMAPKK5 plays a significant role in regulating drought and salt tolerance in potato crop. Yeast two-hybrid (Y2H) screening identified four interacting proteins: StMYB19, StZFP8, StPUB-like, and StSKIP19. BiFC confirmed the authenticity of the interactions. These findings suggest that StMAPKK5 is crucial for potato growth, development, and response to adversity.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Secas , Saccharomyces cerevisiae , Cloreto de Sódio/farmacologia , Estresse Salino , Prolina , Superóxido Dismutase , Água
19.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612913

RESUMO

Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.


Assuntos
Proteínas Hedgehog , Perciformes , Animais , Proteínas Hedgehog/genética , Cloreto de Sódio/farmacologia , Água , Peixe-Zebra/genética , Cloreto de Cálcio , Ecossistema , Cloreto de Sódio na Dieta , Larva/genética , Expressão Gênica
20.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612961

RESUMO

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Assuntos
Gelatinases , Metaloproteinase 9 da Matriz , Humanos , Adolescente , Metaloproteinase 2 da Matriz , Cloreto de Sódio , Cloreto de Sódio na Dieta , HDL-Colesterol , Endopeptidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...